skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McClellan, Scott"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 19, 2025
  2. ABSTRACT This paper reports on a demonstration of YAMZ (Yet Another Metadata Zoo) as a mechanism for building community consensus around metadata terms. The demonstration is motivated by the complexity of the metadata standards environment and the need for more user-friendly approaches for researchers to achieve vocabulary consensus. The paper reviews a series of metadata standardization challenges, explores crowdsourcing factors that offer possible solutions, and introduces the YAMZ system. A YAMZ demonstration is presented with members of the Toberer materials science laboratory at the Colorado School of Mines, where there is a need to confirm and maintain a shared understanding for the vocabulary supporting research documentation, data management, and their larger metadata infrastructure. The demonstration involves three key steps: 1) Sampling terms for the demonstration, 2) Engaging graduate student researchers in the demonstration, and 3) Reflecting on the demonstration. The results of these steps, including examples of the dialog provenance among lab members and voting, show the ease with YAMZ can facilitate building metadata vocabulary consensus. The conclusion discusses implications and highlights next steps. 
    more » « less
  3. Building a knowledge graph is a time-consuming and costly process which often applies complex natural language processing (NLP) methods for extracting knowledge graph triples from text corpora. Pre-trained large Language Models (PLM) have emerged as a crucial type of approach that provides readily available knowledge for a range of AI applications. However, it is unclear whether it is feasible to construct domain-specific knowledge graphs from PLMs. Motivated by the capacity of knowledge graphs to accelerate data-driven materials discovery, we explored a set of state-of-the-art pre-trained general-purpose and domain-specific language models to extract knowledge triples for metal-organic frameworks (MOFs). We created a knowledge graph benchmark with 7 relations for 1248 published MOF synonyms. Our experimental results showed that domain-specific PLMs consistently outperformed the general-purpose PLMs for predicting MOF related triples. The overall benchmarking results, however, show that using the present PLMs to create domain-specific knowledge graphs is still far from being practical, motivating the need to develop more capable and knowledgeable pre-trained language models for particular applications in materials science. 
    more » « less
  4. In this position paper, we describe research on knowledge graph-empowered materials science prediction and discovery. The research consists of several key components including ontology mapping, materials data annotation, and information extraction from unstructured scholarly articles. We argue that although big data generated by simulations and experiments have motivated and accelerated the data-driven science, the distribution and heterogeneity of materials science-related big data hinders major advancements in the field. Knowledge graphs, as semantic hubs, integrate disparate data and provide a feasible solution to addressing this challenge. We design a knowledge-graph based approach for data discovery, extraction, and integration in materials science. 
    more » « less